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Numerous definitions for DR include some “qualitative” terms in the definition making it 
difficult to identify a universally accepted definition of the DR though the concept is useful 

Dynamic Range  

Though the concept of DR is often not discussed rigorously and 
though there are various definitions of DR,  Dynamic Range 
should be the primary driver of signal swing, power dissipation, 
and architecture selection not only in filter circuits but in analog 
circuit design in general

SNDR is a metric that is rigorously defined that captures some 
of the DR properties   
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Statistical Characterization of Noise  
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Analysis of Noise in Filter Circuits
Consider a filter circuit with N noise voltage sources (can be easily modified to 
include both noise voltage and current sources)

The noise sources can be represented by the block diagram shown below

Assume Tk(s) is the transfer function from the kth source to the output
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Review from last lecture



Input-Referred Noise in Filter Circuits
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Let T(s) be the transfer function from the input to the output.  (usually T(s) will be 
distinct from each of the noise transfer functions).

The input-referred noise spectral density is given by the expression
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The input-referred RMS voltage is thus given by

Linear 

Continuous-Time 

System
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Noiseless System

VIN-RMS
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Example:  First-Order RC Network
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From a standard change of variable with a trig identity, it follows that 

• Note the continuous-time noise voltage has an RMS value that is independent of R
• The noise contributed by the resistor is dependent only upon the capacitor value C
• This is often referred to at kT/C noise and it can be decreased at a given T  only by 

increasing C
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Theorem If V(t) is a continuous-time zero-mean noise source 

and <V(kT)> is a sampled version of V(t) sampled at times T, 2T, ….   

then the RMS value of the continuous-time waveform is the same as 

that of the sampled version of the waveform.  This can be expressed 

as
RMS RMS

ˆV V

Theorem If V(t) is a continuous-time zero-mean noise signal and 

<V(kT)> is a sampled version  of V(t) sampled at times T, 2T, ….   then the 

standard deviation  of the random variable  V(kT), denoted as  

satisfies the expression
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C
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Example:  Switched Capacitor Sampler 
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Vn(t)

RS

VLOAD(t)

RL

What is the RMS value of the output noise voltage due to the noise on RS? 

 

Vn(t)

RS
RL

VnL(t)

VLOAD(t)

What is the RMS value of the output noise voltage due to the noise on RL and RS? 
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Digital Filters
Limitations of Analog Filters

• Transfer functions sensitive to component and process variations

• Distortion inherent due to nonlinearities in components (particularly 
amplifiers)

• Power dissipation can be large

• Area gets large, often unacceptably so for very low frequency poles and even 
of concern for audio-frequency poles

• Programmability introduces considerable complexity (with existing 
approaches)

• Making minor changes in filter requirements often necessitates a major 
redesign effort

Advantages of Analog Filters

Significant advantages but since comparative, will discuss later



ADC DAC
Digital Filter

H(z)
XIN(t) XOUT(t)

Analog  Filter

T(s)
XIN(t) XOUT(t)

Analog vs Digital Filter



Analog vs Digital Filter

Analog  Filter

T(s)
XIN(t) XOUT(t)

Re

Im

Re

Im

ADC DAC
Digital Filter

H(z)
XIN(t) XOUT(t)

• Imaginary axis for analog filters corresponds to unit circle for digital filters
• Several standard mappings used to map between s-domain and z-domain
• Some actually map imaginary axis to unit circle



Establish 

Specifications

- possibly TD(s) 

- magnitude and phase

    characteristics or restrictions 

- time domain requirements

Approximation

- obtain acceptable transfer

   functions  TA(s) 

- possibly acceptable realizable 

   time-domain   responses 

Synthesis

- build circuit  that has response  

   close to TA(s)  

Analolg Filter

Establish 

Specifications
- possibly TD(s) or HD(z) 

- magnitude and phase

    characteristics or restrictions 

- time domain requirements

Approximation
- obtain acceptable transfer

   functions  TA(s)  (or possibly HA(z))

- map TA(s)  to  HA(z)

- possibly acceptable realizable 

   time-domain   responses 

Synthesis

- Build ADC and DAC

- Bubuild system  that has response  

   close to HA(z)  

Digital Filter

Filter Design Processes



Digital Filter Properties
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If n=1 termed a Moving Average (MA)   - only zeros present 

If m=1 termed an Auto Regressive (AR)  - only poles present
If mn termed Autoregressive Moving Average (ARMA) – poles and zeros present  1

ADC DAC
Digital Filter

H(z)
XIN(t) XOUT(t)

X(kT) Y(kT)

for β0=1  and
ai=αi

bi=βi



Digital Filter Properties

If n=1 termed a Moving Average (MA)   - only zeros present 

If m=1 or mn the filter will have one or more poles (and possibly  many zeros
but not necessarily any)

1

ADC DAC
Digital Filter

H(z)
XIN(t) XOUT(t)

X(kT) Y(kT)

MA filters have a finite impulse response so are often termed FIR filters

AR and ARMA filters have infinite impulse response so are often termed IIR filters
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Digital Filter Properties

ADC DAC
Digital Filter
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It can be shown that



Digital Filter Properties

ADC DAC
Digital Filter

H(z)
XIN(t) XOUT(t)

X(kT) Y(kT)

Moving Average Filters

   
0

 
m

i
i

y nT a x nT iT

Impulse Input

1

kT

1 2 3 4-1-2 0

Impulse Response

Impulse response often symmetric around “m/2”
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Digital Filter Properties

ADC DAC
Digital Filter
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It can be shown that
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FIR filters are sometimes termed  convolutional filters



Digital Filter Properties

ADC DAC
Digital Filter

H(z)
XIN(t) XOUT(t)

X(kT) Y(kT)
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FIR Filters can be easily designed to have linear phase

Example:   m=7
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Digital Filter Properties
ADC DAC

Digital Filter

H(z)
XIN(t) XOUT(t)

X(kT) Y(kT)Moving Average Filters

Example:   m=7
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FIR Filters can be easily designed to have linear phase

This can be rewritten as
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Digital Filter Properties
ADC DAC

Digital Filter

H(z)
XIN(t) XOUT(t)

X(kT) Y(kT)Moving Average Filters

Example:   m=7
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FIR Filters can be easily designed to have linear phase

Regrouping, we obtain
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It thus follows that

Thus H(z) is linear phase ! 

This property holds for any symmetric impulse response of a FIR filter of any order



Digital Filter Properties

It is easy to design linear phase digital filters

ADC DAC
Digital Filter
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XIN(t) XOUT(t)

X(kT) Y(kT)
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Theorem:   Any FIR filter is linear phase if the impulse response is symmetric 
or antisymmetric

Table from Robert Novak book



Digital Filter Properties

ADC DAC
Digital Filter

H(z)
XIN(t) XOUT(t)

X(kT) Y(kT)

Theorem:   Any FIR filter is linear phase if the impulse response is symmetric 
or antisymmetric

Table from Robert Novak book



Digital Filter Properties

     
0 1 

    
m n

i i
i i

y nT a x nT iT b y nT iT

ADC DAC
Digital Filter

H(z)
XIN(t) XOUT(t)

X(kT) Y(kT)
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An Implementation of a Digital Filter
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Digital Filter Properties
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ADC DAC
Digital Filter

H(z)
XIN(t) XOUT(t)

X(kT) Y(kT)

An Implementation of a FIR Digital Filter

T Z
 -1

Delay Element

X(z)

a0 a1 a2 a3 am

Y(z)

Z
 -1

Z
 -1

Z
 -1

Z
 -1

• Delay operations or delay filters are easily implemented with digital filters

• Delay for each delay element is one clock period



T T T

T T T

Tx(nT)

a0 a1 a2 a3 am

y(nT)

T

-b1 -b2 -b3 -bn

An Implementation of a Digital Filter

An Implementation of an Analog  Filter

T Z
 -1

I(s)

Integrator

• Can be viewed as analogous implementations
• Neither particularly practical
• Many other architectures for both analog and digital filters
• Approximately double the number of integrators or delay elements needed
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An Implementation of a Digital Filter

An Implementation of an Analog  Filter
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Alternate  Implementations of an Digital  Filter

• Reduced number of delay elements by factor of 2
• Still not  particularly practical
• Similar architectural change can be made for analog  filter (next slide)
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T Z
 -1

Delay Element



Alternate  Implementations of an Analog  Filter

I(s)

Integrator

• Reduced number of integrators by factor of 2
• Still not  particularly practical
• Similar architectural change for digital filter (previous slide)
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Alternate Implementations of an FIR  Digital Filter
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Alternate Implementations of IIR  Digital Filter
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Excessive delay elements but not of as much concern as excessive Integrators



Does Digital Filter Overcome Limitations

ADC DAC
Digital Filter

H(z)
XIN(t) XOUT(t)

Analog  Filter

T(s)
XIN(t) XOUT(t)

A    - Transfer functions sensitive to component and process variations

D     - Transfer function part of H(z) not  sensitive to process variations
- Transfer function sensitive to coefficient quantization
- ADC and DAC minimally sensitive to process variations but highly sensitive  
to missmatch

A   - Distortion inherent due to nonlinearities in components (particularly amplifiers)

D     - Transfer function part of H(z) not  sensitive nonlinearity of components
- ADC and DAC sensitive to nonlinearity of components 

A      - Power dissipation can be large

D     - Power dissipation can be large due to a large number of arithmetic operations 
during each clock cycle

- ADC and DAC dissipate considerable energy for high resolution or high speed



Does Digital Filter Overcome Limitations

ADC DAC
Digital Filter

H(z)
XIN(t) XOUT(t)

A    - Area gets large, often unacceptably so for very low frequency poles and even of
concern for audio-frequency poles

D    - Area for DSP in Digital Filter can be large
- ADC and DAC can become large if high resolution is required
- No area penalty for low frequency operation of digital system

Analog  Filter

T(s)
XIN(t) XOUT(t)

A   - Programmability introduces considerable complexity (with existing approaches)

D     - Programmability of filter characteristics is very efficient with digital filter approach

A     - Making minor changes in filter requirements often necessitates a major
redesign effort

D      - Making minor or even major changes in filter requirements requires minimal 
effort with digital filter approach



Stay Safe and Stay Healthy !



End of Lecture 37


